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1 Introduction

This talk is the first in the seminar Almost Mathematics, we aim to introduce the concept of perfectoid
fields, following the structure of [Bha17]. Basic knowledge of algebra should be sufficient for this talk.

Fontaine and Wintenberger [FW79] proved that

Theorem 1.1. The absolute Galois groups of Qp(p
1/p∞

) and Fp((t))(t
1/p∞

) are canonically isomorphic.

The idea of proof : Let K be the completion of Qp(p
1/p∞

) and let K♭ be the completion of
Fp((t))(t

1/p∞
). It is enough to prove that the absolute Galois group of these two are isomorphic. The

choice of notation K♭ is deliberate since we will later prove that K♭ is the tilt of K.
In vague terms, the relation between K and K♭ consists in replacing the prime number p by a formal

variable t [Sch11].
The previous theorem generalises to the perfectoid fields:

Theorem 1.2. When K is perfectoid, the absolute Galois groups of K and K♭ are canonically isomorphic,
where K♭ is the tilt of K.

2 Set Up

2.1 Definitions

Definition 1. Let K be a field. An valuation on K is a function | · | : K → R≥0 satisfying:

1. |x| = 0 iff x = 0 and |1| = 1.

2. |xy| = |x||y| for all x, y ∈ K.

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

A field equipped with an valuation is called a valued field.

Remark 1.

1. The valuation can also be defined to be a map | · | : K → Γ ∪ {0}, where Γ is an ordered abelian
multiplicative group. However, for the purpose of our talk, we only consider the case where Γ has
rank 1, since the definition of perfectoid field required the valuation to have rank 1. Futher, it can
be shown ([AJE05], Proposition 2.1.1) that any rank 1 valuation is equivalent to one which takes
value in R so our definition is equivalent.

2. The term valuation is somewhat unfortunate: if Γ = R>0, then the valuation would usually be
called a seminorm or absolute value, and the term valuation would be used for (a constant multiple
of) the map x→ − log |x|, but we follow Scholze’s notation. See [Sch11], Remark 2.3.

Definition 2. An valuation is non-Archimedean (NA) if it satisfies the ultrametric inequality, i.e. |x+y| ≤
max (|x|, |y|).

Example 1. Over Q, the p-adic valuation | · |pis non-Archimedean.

Definition 3 (The valuation topology). If we define a metric d(x, y) = |x − y|, then this induces a
topology on K.

Definition 4.
K◦ = {x ∈ K | |x| ≤ 1} is an open subring of K, called the valuation ring.
K◦◦ = {x ∈ K | |x| < 1} is the maximal ideal of K◦.
K◦/K◦◦, usually denoted k, is the residue field.
Any nonzero element t ∈ K◦◦ is called a pseudo-uniformizer.
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2.2 Basic Results

Lemma 2.1 (“All triangles are isosceles”). Let (K, | · |) be a non-Archimedean valued field and x, y ∈ K.
If |x| < |y|, then |x− y| = |y|.

Proof. Because of the ultrametric inequality, |y| ≤ max (|x|, |x− y|) = |x−y| and |x−y| ≤ max (|x|, |y|) =
|y|.

Lemma 2.2 (Cauchy sequences in NA fields). Given a NA valued field K and a sequence (an) ∈ K,
(an) is Cauchy iff ∀ϵ > 0, ∃N ∈ N such that for all n ≥ N , |an − an+1| < ϵ.

Proof. If (an) is Cauchy, conclusion is clear.
Conversely, suppose that for all n ≥ N , |an − an+1| < ϵ. Then for all m > n > N ,

|am − an| ≤ max (|ai − ai+1|)m≥i≥n ≤ ϵ

Theorem 2.1 ([AJE05], 1.1.4). There exists a field K̂, complete under an valuation | · |′ which extends
| · | and an embedding i : K → K̂, such that |x| = |i(x)|′ for all x ∈ K. The image i(K) is dense in K̂.

If K̂ ′, i′ is another such pair, then there exists a unique continuous isomorphism ϕ : K̂ → K̂ ′ preserving
the valuation and commutes with i.

Lemma 2.3 (Completion of valuation Ring). Suppose (K, | · |) is a NA valued field, and (K̂, | · |′) is its
completion. Then K̂◦ = {x ∈ K̂ | |x|′ ≤ 1} is equal to the completion of K◦ in K̂.

Proof. Suppose that xn → x, where x ∈ K̂◦ and xn ∈ K. We want to show that xn ∈ K◦.
By Lemma 2.1, eventually |xn|′ = |x|, so |xn|′ ≤ 1 eventually.

Lemma 2.4. For a field K with valuation ring K◦, and a, b ∈ K◦, a | b ⇐⇒ |a| ≥ |b|.

Proof. =⇒ Trivial.
⇐= Suppose |a| ≥ |b|, then |b/a| ≤ 1 so b/a = c ∈ K◦. So ac = b =⇒ a | b.
In particular, this means that for a, b ∈ K◦, either a | b or b | a.

2.3 Notation

In the following sections we will deal with equivalent classes and elements of
∏

n∈NR.

1. Unless otherwise stated,
∏
R is equal to

∏
n∈NRn where Rn = R for all n. Similarly for

⊔
R.

2. We write an element of
∏

n∈NR as (an), with the understanding that the nth element of (an) is an.
We assume the index of (an) start from 0.

3. For a ring R, an element a ∈ R, and an equivalence class ∼ on R, write [a] as the equivalence class
of a.

3 Perfections and Tilting

Definition 5. A characteristic p ring is perfect if the Frobenius map ϕ : x→ xp is bijective; if it is only
surjective, we say that is it semiperfect.

Definition 6 (Inverse Limit). Let (An)
∞
n=1 be a sequence of sets (groups, rings, topological spaces, etc.)

equipped with transition maps (homomorphisms, continuous maps etc.) for j ≥ i ϕi,j : Aj → Ai, such
that ϕik = ϕijϕjk if i ≤ j ≤ k. Then the inverse limit is defined to be:

lim←−
n

An = {(an) : an ∈ An, ϕn+1,n(an+1) = an} ⊆
∏
n

An

Definition 7 (Direct Limit). Let (An)
∞
n=1 be a sequence of sets (groups, rings, topological spaces, etc.)

equipped with transition maps (homomorphisms, continuous maps etc.) for i ≤ j, ϕi,j : Ai → Aj , such
that ϕik = ϕijϕjk if i ≤ j ≤ k. Then the direct limit is defined to be:

lim−→Ai =
⊔
i∈N

Ai

/
∼

where if xi ∈ Ai, xj ∈ Aj , xi ∼ xj if there exists k ≥ i, j such that ϕjk(xj) = ϕik(xi). Intuitively, two
elements in the disjoint union are equivalent if and only if they “eventually become equal” in the direct
system.
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Remark 2. These two definitions can be generalised to any directed set I, not just the natural number.

Definition 8.

1. Let R be a ring with characteristic p. Then we get a direct system, given by {Rn}∞n=1 where
Rn = R, and ϕn : Rn → Rn+1 sends x 7→ xp. Set Rperf := lim−→ϕ

R = lim−→n
Rn.

2. Similarly, we get an inverse system {Rn}∞n=1 where Rn = R, and ϕn : Rn+1 → Rn sends x 7→ xp.
Set Rperf := lim←−ϕ

R = lim←−n
Rn.

3. For any ring R, set R♭ := (R/p)perf. Unless otherwise specified, this ring is endowed with the inverse
limit topology, with each R/p being given the discrete topology.

Remark 3. Rperf corresponds to elements in R with pnth roots for all n, since those are the elements that
the inverse limit picks out.

In constructing Rperf, we have added N many copies of R, and in the nth copy, every element is an
pnth root. So the construction of Rperf is like adding the p∞ roots to R.

Both are ways to construct perfect rings, which is what we will prove next.

Lemma 3.1. When R has characteristic p, both Rperf and R
perf are perfect. The canonical map R →

Rperf (resp. R
perf → R) is universal for maps into (resp. from) perfect rings. Moreover, the projection

Rperf → R is surjective exactly when R is semiperfect.

Proof.

Claim 1. Rperf is perfect.
Injective: suppose that [ap] = [bp], for some a, b in the jth and kth copy of R respectively. Then

there is some n such that (ap)p
n−j

= (bp)p
n−k

. But that means a ∼ b.
Surjective: Suppose a ∈

⊔
R is in the nth copy. Then consider a′ in the n+1th copy of R, which is

equal to a. Then note that ϕn,n+1(a) is equal to a
p in the n+ 1th copy of R, which also happens to be

(a′)p. Since ϕn,n+1(a) = (a′)p, (a′)p ∼ a, and so a′/p is a pth root of a in Rperf. In other words, taking
pth power is a right shift map.

Claim 2. Rperf is perfect.

Injective: Suppose that (an), (bn) ∈
∏
R is such that apn = bpn for all n ∈ N. But then for all n > 1,

apn = an−1 = bpn = bn−1 so an = bn for all n.
Surjective: For (an) ∈ Rperf, a0 has pnth roots for all n. To get a pth root we simply has to shift

the sequence (an) to the left. In other words, (an+1)
p
n∈N = (an)n∈N.

Claim 3. Suppose that we have a ring homomorphism ψ : R→ L, where L is a perfect field. Then we can
find a ring homomorphism Ψ : Rperf → L, which commutes with ψ and the canonical map i : R→ Rperf.

For any α ∈ Rperf, take a representative a in the nth copy of R, such that [a] = α. Let Ψ(α) =
ϕ−n(ψ(a)), which exists and is unique because L is perfect.

We now prove that this map is well defined: indeed, Ψ([ϕn,n+1(a)]) = Ψ([a]).
To see that the map commutes: for all r ∈ R, i(r) is equal to [r] where r is in the first copy of R, so

Ψ([r]) = ψ(r).

Claim 4. Suppose that we have a ring homomorphism ψ : L→ R, where L is a perfect field. Then we can
find a ring homomorphism Ψ : L→ Rperf, which commutes with ψ and the canonical map i : Rperf → R
given by the projection to the first element.

For any a ∈ L, ψ(a) ∈ R has a pnth root for all n ∈ N. This is because a has a pnth root and ψ is a
ring homomorphism.

ψ(a) now determined an element in Rperf: let c0 ∈ R be equal to ψ(a); let cn+1 be the pth root of cn.
Then, (cn) ∈ Rperf.

Let Ψ(a) = (cn) ∈ Rperf. This commutes with ψ and i because c0 = ψ(a).

Claim 5. Canonical map i : Rperf → R is surjective iff R is semiperfect.

The projection map is surjective means every element in R has a pth root. Conversely if R is
semiperfect then every r ∈ R gives rise to an element in Rperf.

Now let us see a few examples.

Example 2.
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1. Fp[t]perf = Fp[t
1/p∞

] and Fp[t]
perf = Fp.

2. Z♭
p = Fp, Fp[t]

♭ ∼= Fp.

Proof.

1. Fp[t]perf = lim−→ϕ
Fp[t].

We define a map ψ :
⊔
Fp[t]→ Fp[t

1/p∞
]: if a ∈

⊔
Fp[t] is in the nth copy, and that a =

∑m
i=0 γit

i ∈
Fp[t], then we define a map ψ(a) =

∑m
i=0 γit

i/pn

. Note that ψ(ϕn,n+1(a)) =
∑m

i=0 γit
ip/pn+1

= ψ(a).

Now we define Ψ : (
⊔
Fp[t]/ ∼) → Fp[t

1/p∞
]: for any α ∈ (

⊔
Fp[t]/ ∼), take a representative

a ∈ Fp[t], and let Ψ(α) = ψ(a). We need to show that it is well defined.

But suppose that we have a in the jth copy, and b in the kth copy are such that and that a ∼ b.
Then there is a n > j, k such that ϕj,n(a) = ϕk,n(b).

Then ψ(a) = ψ(ϕj,n(a)) = ψ(ϕk,n(a)) = ψ(b).

Now we know Ψ is well defined. Ψ is injective because ψ(a) = 0 ⇐⇒ a = 0. It is surjective
because for any element α in Fp[p

1/p∞
], αpn ∈ Fp[t] for n large enough. So by raising α to a high

enough pth power, we can find an element with image α.

Fp[t]
perf = lim←−ϕ

Fp[t].

Take any a ∈ lim←−ϕ
Fp[t] ∈

∏
n∈N Fp[t]. Just project it onto the first element.

Because the first element has infinitely many pnth root for any n ∈ N, the first element must be in
Fp, and the first element determined a. So the map is injective and surjective.

2. Zp/p = Fp, which is perfect, so Fperf
p = Fp. Fp[t]/p = Fp[t], so done by the previous part.

Lemma 3.2. Let f : R → S be a map of characteristic p rings that is surjective with nilpotent kernel.
Then Rperf ∼= Sperf and Rperf

∼= Sperf.

Proof. Suppose ae = 0 for all a ∈ ker(f), and let k be big enough such that pk > e.
There is a natural map (an) ∈ Rperf 7→ (f(an)) ∈ Sperf. It is

1. well defined because f is a ring homomorphism and R has characteristic p;

2. injective because suppose (f(an)) = 0, then an ∈ ker(f) for all n. Further for all n, an = ap
k

n+k = 0

because pk > e. So (an) ∈ Rperf = 0 and the map is injective.

3. surjective: take (bn) ∈ Sperf, and for all n ∈ N, let an ∈ R := Bpk

n+k, where f(Bn+k) = bn+k.
We need to show that the choice of an is well-defined and independent of the choice of Bn+k.

Suppose f(Cn+k) = f(Bn+k) = bn+k, then (Cn+k − Bn+k)
pk

= 0. Hence Cpk

n+k = Bpk

n+k. Further,

f(an) = bp
k

n+k = bn.

Now that’s left to do is to check that (an) is indeed an element of the inverse limit. Indeed,

apn+1 = Bpk+1

n+k+1. But f(B
p
n+k+1) = bpn+k+1 = bn+k, so (Bp

n+k+1)
pk

= Bpk

n+k = an.

Similarly, there is a natural map ψ :
⊔
R →

⊔
S sending a in the nth copy of R to f(a) in the nth

copy of S. This induces a map [a] ∈ Rperf 7→ [ψ(a)] ∈ Sperf. It is

1. well defined because if a ∼ b then f(a) ∼ f(b) since f is a ring homomorphism and preserves powers.

2. injective because suppose that f([a]) = [f(a)] = 0 ∈ Rperf, then f(a)
pn

= f(ap
n

) = 0 for some n,
but that means ap

n

is in the nilpotent kernel, and so ap
m

= 0 for m large enough, and [a] = [0].

3. surjective because for any [b] ∈ Sperf, where b ∈
⊔
S is in the nth copy of S, there exists a in the

nth copy of R such that f(a) = b.

We will next show an elementary lemma:

Lemma 3.3. Let R be a ring (doesn’t have to have characteristic p), and let t ∈ R be an element such
that p ∈ (t). Given a, b ∈ R with a = b (mod t), we have ap

n

= bp
n

(mod tn+1) for all n.
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Proof. We will prove this by induction. If n = 0, there is nothing to prove.
Now, suppose we know ap

n

= bp
n

(mod tn+1) we want to prove that ap
n+1

= bp
n+1

(mod tn+2).
Suppose that ap

n

= bp
n

+ tn+1c for some c ∈ R, then raising both sides by a power of p, we see that

ap
n+1

= bp
n+1

+ p · tn+1 · d+ tp(n+1)cp

for some d ∈ R. Then because p ∈ (t), we have our result.

We will use this elementary result to prove something very important for future applications, since it
gives a “strict” description of the tilt functor.

Lemma 3.4. Assume R is p-adically complete. The projection map R → R/p induces a bijection
lim←−ϕ

R→ lim←−ϕ
R/p = R♭ of multiplicative monoids.

Proof. Injective: Suppose that (an), (bn) ∈ lim←−ϕ
R are sequences such that (an/p) = (bn/p) ∈ lim←−ϕ

R/p.

Then we know that an = bn (mod p) for all n. From the definition of inverse limit, we know that

ap
k

n+k = an for all n, k. Similarly for bn.
Fix n, k. Because we know an+k = bn+k (mod p), from the previous lemma and the fact we just

mentioned, we have an = bn (mod pk+1).
This holds for all k. Now, because R is p-adically complete, we must have an = bn for all n.
Surjective: Fix (αn) ∈ lim←−ϕ

R/p. For all αn ∈ R/p, pick any lift an, then we will modify this so that

it is an element of the inverse limit.
Because ∀n, k, αp

n+k+1 = αn+k, we have that apn+k+1 = an+k (mod p) for all n, k. Hence from the

previous lemma, ap
k+1

n+k+1 = ap
k

n+k (mod pk+1). Now, this holds for all k, therefore the sequence k 7→ ap
k

n+k

is a Cauchy sequence. Because R is p-adically complete, there is a limit ap
k

n+k → bn for some bn ∈ R.
Now we claim bn/p = αn. a

pk

n+k = an (mod p), therefore ap
k

n+k/p = αn for all k, so bn/p = αn too.

Now we check that bpn+1 = bn: b
p
n+1 = limk→∞ ap

k+1

n+1+k = bn by defintion. So (bn) ∈ lim←−ϕ
R, and its

image under the projection is (αn).

Remark 4. Note that the construction of (bn) from (an) in the second half of the proof above is well-
defined (i.e., independent of auxiliary choices of the lifts), and gives an explicit inverse to the projection
lim←−ϕ

R→ lim←−ϕ
R/p = R♭.

Definition 9 (Sharp Map). In Lemma 3.4, via the projection to the first term, we get a multiplicative
map ♯ : R♭ → R denoted f 7→ f ♯.

Remark 5.

1. The image under the sharp map is exactly those f ∈ R that admit a compatible system of p-power
roots. We shall sometimes call such items perfect.

2. The sharp map is not additive. However, it is additive mod p: (x+ y)♯ = x♯ + y♯ (mod p). This is
because (x+ y)p ≡ xp + yp (mod p).

Therefore the bijection lim←−ϕ
R ∼= lim←−ϕ

R/p is additive (mod p), hence so is ♯.

Using the ♯ map, we can understand valuation rings under tilting; this will be useful when discussing
adic spaces later.

Now we see a series of results, that show that tilt preserves a lot of properties of R.

Lemma 3.5. If a p-adically complete ring R is a domain then so is the tilt R♭.

Proof. From Lemma 3.4, we know that We have R♭ ∼= R as a multiplicative monoid.
Fix elements (an), (bn) ∈ lim←−ϕ

R with an · bn = 0 for all n. Then either a0 or b0 vanishes as R is a

domain.
Without the loss of generality, assume a0 = 0. Then, since transition map involves the raising of the

powers, and R is a domain, an = 0 for all n, and so (an) = 0.

Lemma 3.6. If a p-adically complete domain R is a valuation ring (of Frac(R)), the same is true for

its tilt R♭. In fact, if | · | : R → R ∪ {0} is an valuation on R, then the map R♭ ♯−→ R
|·|−→ R gives the

corresponding valuation on R♭.
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Proof. Suppose that there is an valuation | · | on Frac(R), such that R is its valuation ring.
Claim: For any a = (an), b = (bn) ∈ R♭, a | b ⇐⇒ a♯ | b♯
Proof: From the bijection R♭ ∼= lim←−ϕ

R, get A = (An), B = (Bn) ∈ lim←−ϕ
R corresponding to a and b.

It satisfies A | B ⇐⇒ a | b.
Now, because R is a valuation ring, we have that A0 | B0 or vice versa. Wlog assume that A0 | B0,

then, Apn

n |Bpn

n for all n, but this tells us that |An| ≥ |Bn| for all n and so An | Bn for all n ≥ 1. But
also, (An+1/Bn+1)

p = (An/Bn), thus (An) | (Bn) in lim←−ϕ
R. Conversely (An) | (Bn) =⇒ A0 | B0.

So now
(an) | (bn) ⇐⇒ (An) | (Bn) ⇐⇒ A0 | B0 ⇐⇒ a♯ | b♯

Once we have the claim, take any x/y ∈ Frac(R♭) (with x, y ∈ R♭), send it to x♯/y♯ ∈ Frac(R).

Claim 6. |x/y|♭ = |x♯/y♯| is a valuation.

Proof. The only axiom that is difficult is the ultrametric inequality, since we do not know that ♯ map
is additive.

We want to prove that |(x+ y)♯| ≤ max(|x♯|, |y♯|) for x, y ∈ K♭.
Because R is a valuation ring in Frac(R), we have that x♯ | y♯ or vice versa. WLOG assume x♯ | y♯,

but this is equivalent to x | y from the previous claim. Suppose z ∈ R♭ satisfy y = xz.
Now by dividing both sides, it suffices to show that |(1 + z)♯| ≤ 1 + |z♯|. However, (1 + z) ∈ R♭, so

(1 + z)♯ ∈ R, and so |(1 + z)♯| ≤ 1.
Alternatively, note that the sharp map is additive mod p: (x + y)♯ = x♯ + y♯ (mod p). Hence

(x+ y)♯ = x♯ + y♯ (mod p) in R, and so |(x+ y)p
n ♯| ≤ max (|xpn ♯|, |ypn ♯|, |p|). Now if we take pn roots,

and let n→∞, we see that |(x+ y)
♯| ≤ max (|x♯|, |y♯|).

We now show that under this valuation, R♭ is its valuation ring.
Suppose that |x♯/y♯| ≤ 1, then |x♯| ≤ |y♯| which by Lemma 2.4 means y♯ | x♯ in R. But this is

equivalent to y | x in R♭, so x/y ∈ R♭. Conversely, if x ∈ R♭, x♯ ∈ R ahs valuation ≤ 1.

4 Perfectoid Fields

Next, we introduce perfectoid fields. These are NA fields that contain “lots of” p-power roots [Bha17].
The main result is that the tilt of (the ring of integers of) a perfectoid field K is a perfectoid field K of
characteristic p that reflects the algebraic properties of K.

Definition 10. Fix a prime number p. A perfectoid field K is a complete NA field with residue charac-
teristic p such that:

1. The value group |K×| ⊆ R>0 is not discrete.

2. K◦/p is semiperfect, i.e. the Frobenius map K◦/p→ K◦/p is surjective.

Example 3.

1. Qp is not perfectoid.

2. Completely valued field of residue characteristic p where every element x ∈ K has a pth root. This

condition is satisfied, for example, if K is algebraically closed. An example would be K = Cp = Q̂p.

Proof.

1. Qp has discrete valuation, so not perfectoid.

2. Because every element has a pth root, in particular the value group cannot be discrete. But also
the Frobenius map K◦ → K◦ is already surjective, so K◦/p is semiperfect.

Example 4. K = ̂Qp(p1/p
∞).

Proof. The valuation ring of ̂Qp(p1/p
∞) is ̂Zp[p1/p

∞ ]. This is because Qp(p
1/p∞

) =
⋃

n∈N Qp(p
1/pn

). Each

Qp(p
1/pn

) has valuation ring Zp[p
1/pn

], hence the valuation ring of Qp(p
1/p∞

) is Zp[p
1/p∞

]. Finish by
Lemma 2.3. Now we have

̂Zp[p1/p
∞ ]

p
=

Zp[p
1/p∞

]

p
=

Zp[t
1/p∞

]/(t− p)
p

=
Fp[t

1/p∞
]

t− p
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The first equality is true due to density: every x ∈ ̂Zp[p1/p
∞ ] satisfy |x−y| < |p| for some y ∈ Zp[p

1/p∞
],

hence x = y (mod p).
The second equality is true, because we can build a map: ϕ : Zp[t

1/p∞
]→ Zp[p

1/p∞
], given by t 7→ p.

Define Φ : Zp[t
1/p∞

]/(t − p) → Zp[p
1/p∞

] given by [a] 7→ ϕ(a). Can prove this is well defined and an
isomorphism.

But now since Fp[t
1/p∞

] is perfect we get semi-perfectness, and that K is a perfectoid field.

In fact the tilt of this field is ̂Fp((t1/p
∞)), which is intuitively what we will get by replacing all of the

occurances of p with t.
This is because in the next lecture, we should see that the ring of integers of K♭ can be constructed

as K◦♭, and so the tilt is

lim←−
ϕ

Fp[t
1/p∞

]

t− p
= ̂Fp((t1/p

∞))

Lemma 4.1. Let (K, | · |) be a perfectoid field.

1. In |K×| every element is a pth root.

2. We have (K◦◦)2 = K◦◦.

3. The ring K◦ is not Noetherian.

Proof.

1. We temporarily call x ∈ K◦ small if |p| < |x| ≤ 1.

Claim: |x| is p divisible if x ∈ K× is small.

Proof: from the second property from the perfectoid definition, we have y, z ∈ K◦ such that
x = yp + pz. Now, |x| ≤ max(|y|p, |p||z|). But |p||z| ≤ |p| < |x|, so |x| = |y|p, hence p divisible.

Now, we generalise to any x. Because |K| is not discrete, the containment |p|Z ⊆ |K| is a strict
containment. pick any x ∈ K◦ such that |x| ̸∈ |p|Z, then there exists n ∈ Z such that |p|n < |x| <
|p|n−1. Then y := x/pn−1 is small.

Because |p| < |y|, so by Lemma 2.4, y | p, and ∃w ∈ K◦: p = yw. But then w is also small, hence
|p| is a pth power. Hence every element is a pth power.

2. From the previous point, we see that for every x ∈ K◦◦, |x| = |yp| for some y ∈ K◦◦, but then
x = ypu for some unit u ∈ K◦◦, hence in K◦◦2.

3. K◦◦ is not finitely generated: if it is, by some elements {e1, . . . , en}, then every element in = K◦◦

has its valuation bounded above by some 1 − ϵ for some ϵ > 0. But that’s impossible since there
are elements of arbitrarily small valuation.

Remark 6. The proof above shows that |K∗| ⊆ R>0 is generated by {|x| | |p| < |x| < 1}. This observation
will be useful later in analyzing the value group under tilting.
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